
Theor Chem Acc (2007) 118:241–251
DOI 10.1007/s00214-007-0320-8

REGULAR ARTICLE

An analytical second-order description of the S0/S1 intersection
seam: fulvene revisited

Fabrizio Sicilia · Michael J. Bearpark ·
Lluìs Blancafort · Michael A. Robb

Received: 10 January 2007 / Accepted: 1 March 2007 / Published online: 26 May 2007
© Springer-Verlag 2007

Abstract A comprehensive picture of the extended S0/S1

intersection seam of fulvene is presented, using a complete
second-order description. We are now able to discuss the con-
nectivity of all of the seam critical points using the eigenvec-
tors of the intersection-space Hessian. The conjecture (Deeb
et al. in Chem Phys 325:251, 2006) that there are two dis-
joint S0/S1 conical intersections seams in fulvene is found to
be incorrect. Previously reported high symmetry planar and
perpendicular structures are shown to be second-order saddle
points on the intersection seam. In addition, the pyramidal-
ized planar structure is shown to be a first-order saddle point,
a previously located low symmetry structure is also shown to
be a saddle point, and a new global intersection minimum has
been found. The local topology (sloped vs. peaked) of these
five seam critical points is analysed and interpreted using the
second-order analysis.
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1 Introduction

Conical intersections are often invoked in the rationaliza-
tion of chemical processes where the pathway involves more
than a single potential energy surface (see for example
[1–15] and references therein). Conical intersections are not
isolated points, but rather they are connected within a (3N -8)-
dimensional space (N is the number of atoms) where the
degeneracy between the two intersecting states is retained,
i.e., the intersection space [16]. It is also common to refer
to this intersection space as the crossing hyper-line (see for
instance [3–10]) or the seam space (see [1,2,14] and refer-
ences therein). Perpendicular to the intersection space, there
exists a two-dimensional complementary space where the
degeneracy between the two crossing potential energy sur-
faces is always lifted, i.e., the branching space [16] corre-
sponding to the co-ordinates of the classical funnel.

In most applications involving conical intersections, the
two potential energy surfaces in the neighbourhood of a
crossing point have been explored mainly using the first-
order approximation (see for example [1–10]), i.e., char-
acterized exclusively using gradients. Within the first-order
approximation, the branching space is described as a plane,
i.e., the branching plane [16] or g-h plane (see for example [1,
2,14]). The intersection space is approximated to first order
by a set of (3N -8) vectors perpendicular to this branching
plane [1–6,9,16]. The tools to locate, optimize and rational-
ize conical intersection geometries have been implemented
within the first-order approximation (see for example [17–
20]). However, the study of conical intersection beyond first
order can be fruitful (see for example [11–15,21–26]). We
now summarize the type of additional information that can
be obtained from a second-order description of conical inter-
sections.
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The limitation of a first-order description becomes
apparent if one takes a finite linear step, within the (3N -8)-
dimensional intersection space, from an optimized cross-
ing point (for a more detailed discussion see for example
[24–26]). Surprisingly, the degeneracy between the two states
is lifted. This lifting of the degeneracy is due to second-
order effects. In the more correct second-order description
of conical intersections, both the branching space and inter-
section space are curved (see for example [16,22–26]) and
therefore are conveniently described by a set of curvilin-
ear co-ordinates rather than rectilinear co-ordinates. In such
intersection-space curvilinear co-ordinates, the degeneracy
between the two intersecting states is correctly retained for
a finite step in the intersection space. The Hessian evaluated
with respect to these co-ordinates is the intersection-space
Hessian: at an optimized conical intersection point, the diag-
onalization of the intersection-space Hessian gives the cur-
vature of the conical intersection hyper-line energy. Thus,
one can characterize optimized conical intersection geome-
tries as either minima or saddle points within the intersection
space. The curved nature of the conical intersection seam also
manifests itself in the fact that the local topology (sloped vs.
peaked [16]) can change along the hyper-line. We will give an
analytic characterization of the sloped versus peaked topol-
ogy and illustrate this in fulvene calculations to be presented
below.

A brief aside on curvilinear co-ordinates completes this
qualitative discussion. The position of a point in an
m-dimensional space may be given as a set of m numbers,
i.e., its co-ordinates. When this set of numbers is given with
respect to a set of m level curves rather than to a set of m rec-
tilinear axes, the co-ordinates used are said to be curvilinear.
The evolution of a curvilinear co-ordinate takes place along
a curve, whereas a step along a rectilinear co-ordinate yields
a displacement along a straight line. In the application stud-
ied in this work, the curvilinear co-ordinates are computed
as a non-linear combination of the rectilinear intersection
adapted co-ordinates, routinely used in the study of conical
intersections (see for example [1–10,14,16]).

Our objective in this paper is to present a comprehen-
sive analysis of the S0/S1 fulvene intersection hyper-line.
This is important for three reasons. Firstly, we have previ-
ously studied this system with a more approximate version
of our second-order analysis [26] than is presented in this
paper (and in more detail in [24]). Fulvene has proved to be
a useful benchmark study for methods that characterize con-
ical intersection topology, and we now have more consistent
data. Secondly, the conical intersection of this system had
been also studied by other workers (see for example [27,28])
and we hope to answer some theoretical questions raised by
these studies. In particular, in [28], Deeb et al. proposed that
the planar and twisted conical intersection points belong to
different disjoint S0/S1 intersection seams. We show that this

is incorrect. These authors also claimed that the degeneracy
along the torsion co-ordinate is only preserved for angles
larger than 45◦. However, when a constrained optimization
in the intersection space is performed [21], a continuous seam
of degenerate points can be mapped along all torsion values.
They further suggested that the planar conical intersection
was involved in a bond breaking process, and we will also
show that this is not correct.

Finally, the general description of the complete topol-
ogy of intersection hyper-lines is of interest chemically. For
example, in our early MMVB studies [29] of fulvene, we
showed that the non-radiative decay from the S1 state of ful-
vene takes place in the planar conical intersection region.
Dynamics calculations showed that the deactivation occurs
here, away from the lower-energy twisted region of the inter-
section hyper-line. Thus, the planar conical intersection was
clearly a saddle point, although we had no way to demonstrate
this at the time, lacking the second-order analysis as pre-
sented in this and in previous works [24–26]. The extended
nature of the conical intersection has been demonstrated in
several other chemical systems (see for example [4,9,21–
26,30]). Thus an accurate description of the curvature of the
conical intersection seam is useful to rationalize non-adia-
batic deactivation processes in general.

2 Theory

In this section we briefly summarize the second-order
description of conical intersections recently developed and
how the intersection-space Hessian can be computed [24–
26]. The presentation included here provides only the key
equations obtained in [24]. Other authors have proposed
related approaches to describe conical intersections to the
second order (see for example [2,12–14,22,23,31]). How-
ever, most of these methods involve mainly fitting proce-
dures, in contrast to our analytical methodology. In order to
give a clearer mathematical presentation, we discuss the sec-
ond-order description of conical intersections in comparison
with the second-order description of a single potential energy
surface.

We begin by providing a second-order description of a
single Born–Oppenheimer potential energy surface. We can
construct such a potential energy surface as a Taylor expan-
sion performed around a reference geometry q0:

UBO(q) = U (0)
BO(q0) + U (1)

BO(q) + U (2)
BO(q) (1a)

where:

U (1)
BO(q) =

3N−6∑

i=1

∂UBO(q0)

∂qi
qi =

3N−6∑

i=1

κi qi (1b)

U (2)
BO(q) = 1

2

3N−6∑

i, j=1

∂2UBO(q0)

∂qi∂q j
qi q j = 1

2

3N−6∑

i, j=1

γi j qi q j (1c)
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such that:

UBO(q) = U (0)
BO(q0) +

3N−6∑

i=1

κi qi + 1

2

3N−6∑

i, j=1

γi j qi q j (1d)

If we now use the normal co-ordinates, Qi , that diagonalize
the Hessian matrix, γi j , and we assume the reference point
to be an equilibrium geometry, we then obtain:

UBO(Q) = 1

2

3N−6∑

i=1

νi Q2
i (1e)

which is the usual expansion of a single potential energy
surface in terms of eigenvalues of the Hessian. Thus, the
first-order term U (1)

BO vanishes since the gradient of the
potential energy, κ , computed at a minimum point is zero.
The remaining second-order term is expressed in normal co-
ordinates such that νi represents the force constants related
to the Qi normal co-ordinates. The force constant νi can be
used to evaluate the frequencies of the molecule at a criti-
cal point on the potential energy surface. Furthermore, the
sign of νi is the sign of the surface curvature along the Qi .
Thus, νi indicates whether the optimized geometry is a min-
imum, a saddle point or a maximum on the potential energy
surface. If N is the number of atoms belonging to a mol-
ecule, there are zero, m or (3N -6) negative νi values for
a molecular geometry corresponding to a minimum, an m-
order saddle point or a maximum, respectively [32]. (To avoid
any confusion: we use ‘order‘ in this context to indicate the
number of directions that lower the energy at a seam critical
point, but these directions are all computed explicitly using a
second-order—first and second derivatives—representation
of the seam itself.)

We now want to briefly present the analogous development
for the expansion of the potential energy surfaces around
the conical intersection point and the curvature of the coni-
cal intersection hyper-line energy. In other words, when we
locate a conical intersection critical point, we wish to know
whether it is a saddle point or a minimum on the (3N -8)-
dimensional intersection hyper-line.

In the case of two electronic states, i.e., state A and state B,
we can expand the potential energy around a point of degen-
eracy, i.e., a conical intersection, and develop the two-level
analogue of Eq. (1). In this case, we obtain a matrix which can
be diagonalized to give the two potential energy surfaces of
state A and state B. We have presented a detailed discussion
of this process in [24] and other related theoretical treatments
can be found in [1,2,11–16,31,33]. In the present paper, we
report only the main ideas.

The two level expansion analogous to Eq. (1) is shown in
Eq. (2).

W
(
Q̄
) =

(
κ A

x1
Q̄x1 + κ A

x2
Q̄x2 κ AB

x2
Q̄x2

κ AB
x2

Q̄x2 κ B
x1

Q̄x1 + κ B
x2

Q̄x2

)

+1

2

⎛

⎜⎜⎜⎝

3N−6∑
i, j=1

γ A
i j Q̄i Q̄ j

3N−6∑
i, j=1

ηAB
i j Q̄i Q̄ j

3N−6∑
i, j=1

ηAB
i j Q̄i Q̄ j

3N−6∑
i, j=1

γ B
i j Q̄i Q̄ j

⎞

⎟⎟⎟⎠ (2)

The potential energy constants used in Eq. (2) are defined
in Table 1. Notice that we have partitioned the co-ordinate
space such that:

Q̄ = (
Q̄x1 , Q̄x2

)⊕ (
Q̄3, Q̄4, . . . , Q̄3N−6

)
(3a)

The first set of co-ordinates,
(
Q̄x1 , Q̄x2

)
, consists of the two

co-ordinates spanning the gradient difference vector,
Eq. (3b), and the non-adiabatic interstate coupling vector,
Eq. (3c).

x1 ≡ ∂(EB − E A)

∂q
(3b)

x2 ≡ ∂ 〈φA| Ĥe |φB〉
∂q

(3c)

Distortions along these two co-ordinates lift the degeneracy
and these vectors span the branching plane [16]. The second
set of co-ordinates in Eq. (3a) corresponds to the co-ordi-
nates along the (3N -8) vectors perpendicular to the branching
plane. Along this second set of co-ordinates the degeneracy
is retained at the first order.

Notice that the diagonal terms of the matrix in Eq. (2) have
the same meaning as the symbols used in Eq. (1). Thus the
diagonal of this two-level matrix is a second-order expan-
sion of the potential energy surface, completely analogous
to Eq. (1). However, the two energies computed in this diag-
onal expansion are diabatic energies rather than adiabatic
energies. Upon addition of the off-diagonal elements κ AB

Table 1 Definition of the potential energy constants (k = A, B; i, j =
x1, x2, 3, . . . , 3N − 6)

First-order potential Second-order potential
energy constants energy constants

κk
i ≡ ∂ 〈φk | Ĥe |φk〉

∂ Q̄i

∣∣∣∣∣
0

(a) γ kk
i j ≡ ∂2 〈φk | Ĥe |φk〉

∂ Q̄i ∂ Q̄ j

∣∣∣∣∣
0

(e)

κ AB
i ≡ ∂ 〈φA| Ĥe |φB〉

∂ Q̄i

∣∣∣∣∣
0

(b) ηAB
i j ≡ ∂2 〈φA| Ĥe |φB〉

∂ Q̄i ∂ Q̄ j

∣∣∣∣∣
0

(f)

λi ≡ κ B
i + κ A

i (c) ωi j ≡ γ AA
i j + γ B B

i j (g)

δκ ≡ κ B
i − κ A

i (d) δγi j ≡ γ B B
i j − γ AA

i j (h)

φk represents the optimized wave-function of the kth state and Ĥe is the
electronic Hamiltonian
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and ηAB , which represent the expansion of the interaction of
the diabatic states, followed by the diagonalization of W

(
Q̄
)
,

one obtains the adiabatic energies as a function of Q̄i .
The two adiabatic potential energy surfaces are computed

by diagonalizing the potential energy matrix defined in
Eq. (2):

UA,B
(
Q̄
) = 1

2

⎧
⎨

⎩λx1 Q̄x1 + λx2 Q̄x2 +
3N−6∑

i, j=1

ωi j

2
Q̄i Q̄ j

⎫
⎬

⎭

± 1

2

√√√√√

⎡

⎣δκ Q̄x1 +
3N−6∑

i, j=1

δγi j

2
Q̄i Q̄ j

⎤

⎦
2

+ 4

⎡

⎣κ AB Q̄x2 +
3N−6∑

i, j=1

ηAB
i j

2
Q̄i Q̄ j

⎤

⎦
2

(4)

As before, the potential energy constants used are defined in
Table 1. The difference of the two gradient projections along
the non-adiabatic interstate coupling vector, δκx2 , vanishes as
does the κ AB

x1
term, because the gradient difference [Eq. (3b)]

and the non-adiabatic interstate coupling [Eq. (3c)] vectors
are chosen perpendicular to one other. For simplicity’s sake,
we therefore suppress the use of subscripts for the terms δκ

and κ AB .
The physical meaning of Eq. (4) merits a few comments.

From Eq. (4), one can see the effect of including second-order
potential energy constants, δγi j and ηAB

i j , in the description of
conical intersections. Because of these second-order terms, it
is clear that the degeneracy is lifted at second order also along
the co-ordinates spanning the (3N -8) vectors perpendicu-
lar to the branching plane, Q̄i (i = 3, 4, . . . , 3N − 6) (i.e.,
when the branching plane co-ordinates, Q̄x1 and Q̄x2 , are
set to zero, the square root does not equal zero at second
order). Further, within the first-order description of the inter-
section space, i.e., along the (3N -8) Q̄i , the profiles of the
two potential energy surfaces resemble those of molecules
showing the Renner–Teller effect (see for example [1,2,24–
26,34] and references therein).

We now turn our attention to the curvature of the inter-
section hyper-line energy. Thus, as we have shown above, at
second order the degeneracy is lifted along the (3N-8) Q̄i in
addition to the two branching space co-ordinates,

(
Q̄x1, Q̄x2

)
.

The locus of points along which the degeneracy is retained at
second order can be described by a set of parabolic intersec-
tion co-ordinates ( fi ), as described in detail in [24–26]. Our
objective now is to express the Hessian in these curvilinear
co-ordinates, i.e., to compute the intersection-space Hessian.
The diagonalization of this intersection-space Hessian gives
the signature of the intersection hyper-line energy.

The parabolic intersection co-ordinates are given as:

Q̄x1 =
3N−6∑

i, j=3

αi j fi f j αi j = −
I Sδγi j

2δκ
(5a)

Q̄x2 =
3N−6∑

i, j=3

µi j fi f j µi j = −
I SηAB

i j

2κ AB
(5b)

Q̄i = βi fi βi = 1 (5c)

Expressing the energy function [Eq. (4)] as function of
these curvilinear co-ordinates, one obtains the energy of the
intersection seam as shown in Eq. (6).

USeam = 1

2

⎧
⎨

⎩
∑

i, j∈I S

λx1

(
αi j fi f j

)+ λx2

(
µi j fi f j

)

+
I Sωi j

2
βiβ j fi f j

}
(6)

The superscript IS is introduced to indicate that the corre-
sponding quantities have been computed by projecting out
the two branching plane modes, as proposed in our previous
studies [24–26].

The Hessian of the seam energy evaluated in curvilinear
co-ordinates at an optimized crossing point, i.e., the inter-
section-space Hessian, is a (3N -8) by (3N -8) matrix and is
defined as:

∂2USeam

∂ fi∂ f j

∣∣∣∣
f =0

= 1

2

(
ISωi jβiβ j + 2λx1αi j + 2λx2µi j

)

= 1

2

(
I Sωi j − λx1

δκ

I Sδγi j − λx2

κ AB
I SηAB

i j

)

(7)

It should be noticed that in Eq. (7) the indices i and j run from
3 to 3N -6. The diagonalization of this matrix provides the
seam force constants of the molecule at an optimized conical
intersection point. As for a single potential energy surface
[Eq. (1)], the force constants can be used to compute the cur-
vatures of the intersection seam energy or the frequencies of
the molecule in the intersection space. From the diagonaliza-
tion, a set of eigenvectors is also obtained. These vectors are
tangent vectors to the curvilinear intersection co-ordinates,
fi , at the reference point, and they have the same meaning
as Qi discussed for Eq. (1).

It is worth mentioning that using the potential energy con-
stants defined in Table 1, one can also quantify the local
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topology of a critical point of conical intersection as sloped
or peaked, using the nomenclature originally proposed by
Atchity et al. [16]. However, we note that other ways to clas-
sify the local topology of conical intersections have been
elsewhere reported (see for example [2]).

σi =
[
(λi )

2 − (δκi )
2
]

i = x1, x2 (8)

When σi is positive then a sloped topology arises, otherwise
a peaked topology occurs. We now explain the origin of Eq.
(8). A sloped conical intersection arises when the gradients
of the two potential energy surfaces point in the same direc-
tion. On the other hand, a peaked conical intersection occurs
when the gradients of the two intersecting potential energy
surfaces are directed towards different directions. Thus, to
discriminate peaked conical intersections from sloped con-
ical intersections along the gradient difference vector, for
instance, one can use the signs of the gradient projections,
κ A

x1
and κ B

x1
. Therefore, since sign(σi ) = sign

(
κ A

i · κ B
i

)
, σi

can be used to quantify the local topology of conical inter-
sections.

In our first study on the curvature of the intersection seam
energy [26], we neglected the second-order non-adiabatic
coupling elements, I SηAB

i j , and we assumed that the remain-
ing second-order matrix, δγi j , was diagonal. However, we
will show below that Eq. (18) in [26], given as Eq. (9) here,
is a limiting case of the new working equation [Eq. (7)]. In
other words, we will show that Eq. (9) is the same as Eq.
(7) when only the diagonal intra-state coupling terms, δγi i ,
are considered, and the second-order interstate coupling con-
stants, I SηAB

i j , are set to zero.

∂2USeam

∂ f 2
i

∣∣∣∣∣
f =0

= 2

{(
γ A

ii
I Sδγi i

)
−
(

κ A

δκ

)}
(9)

If states A and B are chosen arbitrarily and the curvature of
the energy seam needs to be a single value, then the following
must hold:
{(

γ B
ii

I Sδγi i

)
−
(

κ B

δκ

)}
=
{(

γ A
ii

I Sδγi i

)
−
(

κ A

δκ

)}
(10)

Using this equality, rearranging Eq. (9) and using some of
the constants defined in Table 1, one obtains:

∂2USeam

∂ f 2
i

∣∣∣∣∣
f =0

= 1
I Sδγi i

{
I Sωi i − λx1

δκ

I Sδγi i

}
(11)

Although the elements obtained in Eq. (11) seem different
from the diagonal elements of the intersection-space
Hessian [Eq. (7)], one should note that in the previous devel-
opment a 1

2 factor preceding the second-order term in the Tay-
lor expansion of the potential energy matrix (Eq. (3a) in [26])
was neglected, since the purpose of that study was mainly the
sign and not the actual value of the energy seam curvature.

Furthermore, using that parameterization one should have
taken into account the scale factors in the differentiation pro-
cedure [35]. These factors evaluated at the origin, fk = 0,
are equal to one for the parameterization reported in Eq. (5),

but they equal
(

ISδγi i
)− 1

2 when computed for the parameter-
ization used in [26]. Thus, if Eq. (11) is multiplied by I Sδγi i

and the neglected 1
2 , one re-obtains exactly the same diag-

onal elements of the intersection-space Hessian reported in
Eq. (7). In summary, we have shown that the equation pre-
viously obtained for the curvature of the energy seam at an
optimized conical intersection is a limiting case of the more
general one given here [Eq. (7)] and in [24].

We conclude this section by mentioning that in this paper
we will focus only on the intersection space and its descrip-
tion at the second order. However, using Eq. (4), two
co-ordinates perpendicular to the second-order intersection
space (in the sense proposed by Atchity et al. [16]) can be
defined:

f1 = δκ Q̄x1 +
3N−6∑

i, j=3

δγi j

2
Q̄i Q̄ j = 0 (12a)

f2 = κ AB Q̄x2 +
3N−6∑

i, j=3

ηAB
i j Q̄i Q̄ j (12b)

It is intuitively clear that moving away from a conical inter-
section point along one of the co-ordinates defined above
means that the two potential energy surfaces [Eq. (4)] will
split apart. Thus these two curvilinear co-ordinates span the
parabolic branching space [24], and are currently under
investigation. It should be noted that the second-order
co-ordinates are merely an extension of the corresponding
first-order co-ordinates. Indeed if the second-order terms are
neglected it can easily be appreciated that f1 and f2 cor-
respond to the gradient difference Q̄x1 , and the interstate
coupling Q̄x2 , co-ordinates, respectively.

3 Computational details

All of the conical intersection critical points for fulvene were
computed and optimized using the complete active space self-
consistent field (CASSCF) method implemented in a devel-
opment version of Gaussian [36]. An active space of six π

electrons and six π orbitals, [CAS(6,6)], with the Dunning
cc-pVDZ basis set was used. Although this active space was
selected to describe the π interactions, it is also capable of
describing the σ bond elongation present in some of the opti-
mized structures satisfactorily, as we shall show in the next
section. In the case of CIPlan, for instance, we found that
the inclusion of two more electrons and orbitals (one σ and
one σ ∗) in the active space leads to a variation of only 0.2
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Angstroms in the length of the exocyclic CC bond.
Therefore, the (6,6) active space is sufficient to analyse the
S0/S1 crossing seam of fulvene.

Each of the conical intersection points was optimized
using the algorithm proposed by Bearpark et al. [19] and
state-averaged wavefunctions for equally weighted ground
and first excited states. Moreover, an accuracy of 10−10 on
the electronic energy was imposed such that an energy differ-
ence of less than 0.05 kcal mol−1 was reached at each of the
degenerate points.

Throughout the rest of this paper, we will refer to the
un-mass-weighted Cartesian eigenvectors obtained from the
diagonalization of the intersection-space Hessian [Eq. (7)]
as the seam normal modes. The eigenvalues obtained from
the same diagonalization can be expressed in cm−1 giv-
ing what we will refer to as the seam frequencies. First-
and second-order potential energy constants as well as the
seam frequencies and seam normal modes were computed
using the algorithm reviewed in the previous section (A more
detailed discussion on the computation of the potential energy
constants can be found in [24] and [26]) and implemented in
a development version of Gaussian. It should be emphasized
that once one can compute the state-averaged Hessians for the
two potential energy surfaces, implementation of the inter-
section-space Hessian [Eq. (7)] is relatively straightforward.

If an imaginary seam frequency was computed, then the
corresponding seam normal mode was used to detect lower
energy structures on the crossing seam: starting from the opti-
mized conical intersection structure, a displacement along
this vector was taken to generate the new geometry, from
which a new conical intersection optimization was
performed. A full reaction path computation restricted to
the intersection space would be required to infer rigorously
that two conical intersection geometries are both on the same
seam. Nevertheless, the procedure adopted here strongly sug-
gests that two geometries (initial and final) are connected
along the crossing hyper-line, which is the main purpose of
this study. Furthermore, through constrained optimizations
[21], we have already shown in another way that two of the
seam critical points we discuss below lie on the same seam.

4 Results and discussions

Analysis of the intersection-space Hessian [Eq. (7)] has been
used to gain additional insights into the S0/S1 intersection
seam of the fulvene molecule. The main purpose of this paper
is to show how optimized conical intersection geometries can
be characterized as minima or saddle points on the intersec-
tion hyper-line by using the intersection-space Hessian. In
this work—for the first time for fulvene—we have computed
the eigenvectors of the intersection-space Hessian; not just

the eigenvalues as in [26]. Thus we are now able to discuss
the connectivity of all of the optimized conical intersection
geometries using the eigenvectors of the intersection-space
Hessian: each saddle point can be linked to a lower energy
structure by following eigenvectors corresponding to imagi-
nary frequencies.

Fulvene is one of the isomers of benzene and its first
excited state is characterized by a lack of fluorescence indi-
cating a fast internal conversion to the ground state via a con-
ical intersection. Previous CASSCF studies on the fulvene
S0/S1 intersection seam located four different conical inter-
section geometries, namely CI63, CIPyr, CIPerp and CIPlan

[21,26–29]. These four structures were previously charac-
terized by a more approximate second-order analysis. As we
will see, the nature of these critical points (number of imag-
inary frequencies) now changes, and an additional conical
intersection geometry has been optimized, using the new
insights provided by having both eigenvectors and eigen-
values of the intersection-space Hessian.

The geometries and energies of the five conical intersec-
tion (CI) structures CI63, CIPyr, CIPerp, CIPlan and CIMin,
are reported in Table 2, and all but CIMin are in agreement
with the ones previously reported in the literature
[21,26–29].

The seam frequency analysis reveals that the four previ-
ously reported structures (i.e., CI63, CIPyr, CIPerp, CIPlan)
are either first- or second-order saddle points (Table 4) in
the intersection space. At each of these optimized points,
first-order branching plane (i.e., gradient difference and non-
adiabatic interstate coupling) vectors (Table 3) and the seam
normal modes (Table 4) were computed. Moreover, whenever
an imaginary frequency was computed, the corresponding
seam normal mode was used to detect lower-lying conical
intersection points as discussed in the previous section. We
have consequently located an additional conical intersection
point, CIMin (Table 2), which appears to be the global mini-
mum on the intersection hyper-line.

In Fig. 1, we show the topology of the conical inter-
section seam geometries computed on the S0/S1 seam of
fulvene. Torsion and pyramidalization motions of the methy-
lenic group [8,10,21,26–29] are the most important modes
involved in the description of this intersection seam. For the
structures studied, these two modes are orthogonal to the two
motions defining the branching plane and therefore they are
two of the (3N -8) vectors describing the intersection space at
the first order. In the first-order description of conical inter-
sections, if one takes a finite step within the intersection
space, the degeneracy between the two states is lifted.

In the second-order description of conical intersections,
the intersection space is curved and if one takes a step in
curvilinear co-ordinates, the degeneracy is retained. The
eigenvectors, which are combinations of the pyramidaliza-
tion and torsion modes and those belonging to the branching
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Table 2 Conical intersection critical points optimized for fulvene

CIMin CI63 CIPerp CIPyr CIPlan
C1 C2 C2v Cs C2v

Energy (Hartree) −230.6513957a −230.6513918a −230.64783 −230.63543 −230.63545

Relative energy (kcal mol−1) 0.0 0.003 2.3 8.3 9.7

R(1,2) = R(2,3) 1.410 1.409 1.424 1.377 1.372

R(1,4) 1.461 1.461 1.424 1.521 1.531

R(3,5) 1.460 1.461 1.424 1.521 1.531

R(4,5) 1.371 1.371 1.413 1.326 1.320

R(2,6) 1.481 1.482 1.478 1.567 1.578

R(6,7) = R(6,8) 1.081 1.081 1.082 1.084 1.078

R(3,9) = R(1,10) 1.080 1.079 1.079 1.081 1.082

R(4,12) = R(5,11) 1.079 1.079 1.079 1.079 1.079

D(7,6,2,3) −58.69 −63.14 90.0 −18.06 0.0

D(7,6,2,8) 171.30 180.00 90.0 180.00 180.00

The bond lengths and angles are reported in angstroms and degrees, respectively
a The calculations were carried out with an accuracy of 10−10 on the electronic energy

plane (skeletal deformations), are tangent to these curvilinear
co-ordinates. Accordingly, a step along one of the curvilinear
co-ordinates corresponding to these eigenvectors keeps the
molecule in the second-order intersection space [as shown in
Eq. (5)] and simultaneously lowers the energy. For example,
moving away from the CIPlan geometry, which is a second-
order saddle point within the intersection space (Table 4), and
following the positive direction of the two modes reported
by dotted lines in Fig. 1, i.e., the motions corresponding to
the two imaginary frequencies (Table 4), one reaches the
CIPyr and CI63 structures. This situation is analogous to a
second-order saddle point on a single potential energy sur-
face, except that the motion is along a curvilinear co-ordi-
nate, which keeps one in the intersection space. We now
develop this idea along some of the other connecting lines in
Fig. 1.

Along the curvilinear co-ordinate connecting CIPlan to
CI63, there exists another critical point on the S0/S1 cross-
ing hyper-line: CIPerp (Table 2), not shown in Fig. 1. We
emphasize that the curved nature of the intersection seam
co-ordinate is a central feature of the analysis. For example,
starting from CIPlan the curvilinear co-ordinate that connects
it to CI63 is a non-linear combination of an intersection space
mode (i.e., torsion corresponding to the imaginary frequency
in Table 4), and branching space motions (i.e., bond stretch-

ing in Table 3). Thus, the intersection space is not rectilinear
as predicted by the first-order description of this space, and
the intersection space co-ordinate corresponding to the tor-
sion motion alone does not connect the two isomers.

Similarly, starting from the CIPyr geometry, a rotational
motion, i.e., seam mode corresponding to the imaginary fre-
quency at 392i cm−1 (Table 4), combined with branching
space motions (Table 3) leads to the CIMin structure. The
same result is achieved taking a small displacement from
CI63 along the pyramidalisation vector, which corresponds
to the seam normal mode associated with the imaginary fre-
quency computed (Table 4), followed by a conical intersec-
tion optimization. Therefore, these results suggest that both
the geometries CIPyr and CI63 are saddle points connected
by the valley where CIMin lies.

We now consider the analysis of the local topology (sloped
vs. peaked) at various conical intersection critical points using
Eq. (8). From an inspection of Table 5, it is clear that the
planar and pyramidalized conical intersections (CIPlan and
CIPyr) are sloped and the remaining conical intersections
are peaked. For sloped conical intersections, the excited-
and ground-state local minima along a cross-section in the
branching space lie on the same side of the conical intersec-
tion geometry. In contrast, for a peaked conical intersection,
the two minima lie on the two different sides of the conical
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Table 3 Gradient difference
and interstate coupling vectors
at the critical points on the
fulvene conical intersection
seam shown in Table 2

Geometry Gradient difference vector Interstate coupling vector

CIPlan

H

H

C

C

C

C

H

H

C C

H

H

H

H

CC

H

H

C

C

C

C

H

H

CIPerp
HCC

H

H

C

C

C

C

H

H

H HCC

C

C

H

H

C

C

H

H

H

CI63

H

H

C

C

H

C

C

H

H

C C
H

H

H

C

C

H

C

C

H

H

C C
H

CIMin

H

H C
C

H

CC

C

H

CH

H

H

H

CH

C

C C

C
C

H

H

H

CIPyr

H

H

H C
C

CC

H
C

CH

H

H

H C
C

H

CC

C
C

H

H

H

intersection point. Thus the change in the local topology is
a further diagnostic of the curved nature of the intersection
space, as discussed in [21].

The second-order analysis just presented enables us to
discuss conjectures about the extended nature of the conical
intersection seam in the calculations of other workers. Deeb
et al. [28] have suggested that CIplan and CIperp belong to
two different S0/S1 intersection seams, based on the fact that
in their calculation, the degeneracy at CIPlan along the tor-
sion co-ordinate is only preserved for angles larger than 45◦.
In fact (Table 4), CIPlan is a second-order saddle point, where
one of the directions of negative curvature is the torsion that

(partly) leads to CIPerp. The lifting of the degeneracy along
the torsion is an artifact of using a first-order representation.
When one allows mixing of the intersection and branching
spaces (described at the first order), the degeneracy can be
maintained along the resulting curvilinear co-ordinate. So,
this conjecture of Deeb et al. is incorrect and an artefact of
using a first-order approximation of the intersection space.

Deeb et al. also suggested that CIplan is involved in a bond
breaking process, inferred from the fact that the exocyclic CC
bond is stretched to approximately 1.7Å at the CAS(8,8)/
cc-pVDZ level of theory. In fact, the gradient difference vec-
tor [shown in Table 3 for CAS(6,6)] involves a CC stretch.
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Table 4 Imaginary frequencies
evaluated at the critical points
on the fulvene conical
intersection seam shown in
Table 2 (i = √−1)

a The symmetry of the normal
mode is given within the point
group of the geometry it belongs
to

Geometry Seam frequency (cm-1) Symmetrya Intersection space modes

CIPlan (C2v) 591i b1

H
H C HC C C

C HCH
H

CIPlan (C2v) 437i a2

H
H C HC C C

C HCH H

CIPerp (C2v) 612i a2

H
H CC

C

H

C
C

H

H C
H

CIPerp (C2v) 127i b2

H
H CC

H

C C

H

C CH
H

CIPyr (Cs) 392i

H
H C

HC C C
C

HCH
H

CI63 (C2) 73i b
HH CC

H

C C

H

C CH
H

However, at CIplan one has a sloped topology at both levels
of theory (Table 5), and the excited B2 state has a positive
gradient along the CC stretching co-ordinate (see also Fig. 4
of [26]). Thus, the potential energy along the stretching co-
ordinate is “bound” and not “repulsive” as one would expect
for a state that leads to scission of this CC bond.

To conclude, we briefly compare the results presented
here with the more approximate implementation described in
[26]. The major point of difference is that the CI63

geometry was previously predicted to be a minimum [26]
and the lowest energy point on the fulvene S0/S1 conical
intersection seam. However, in Table 4, one can see that
CI63 is in fact a first-order saddle point within the inter-

section space. This result was also confirmed by locating
a marginally (<0.01 kcal mol−1) lower energy structure on
the same intersection seam, CIMin (Table 2). It is quite diffi-
cult to make a detailed comparison between the approxi-
mate results presented in [26] and our new results, because in
[26] we needed to manually match up eigenvectors resulting
from independent diagonalizations of the state A and state B
Hessians, which was often quite difficult. (Nevertheless, these
first results were sufficiently interesting that they stimulated
the present work.) Other minor differences include CIPerp,
which changes from a first- to a second-order saddle point,
and CIPyr, which changes from a minimum to a first-order
saddle point.
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Fig. 1 Schematic
representation of the conical
intersection hyper-line topology
(excluding CIPerp) in the space
of torsion and pyramidalization.
The seam normal modes
corresponding to the imaginary
frequencies that connect the
conical intersection geometries
optimized on the S0/S1 seam of
fulvene are shown as vectors for
hydrogen motions only

Table 5 First-order potential constant values/(a.u) at the conical inter-
section critical points for fulvene (Table 2)

Geometry κ AB δκ λ1 λ2 σx1 Topology

C I Plan 0.115 0.261 0.516 0.000 0.198 Sloped

C I Perp 0.114 0.229 −0.020 0.000 −0.052 Peaked

C I Pyr 0.114 0.263 −0.475 0.000 0.156 Sloped

C I 63 0.109 0.245 0.192 0.000 −0.023 Peaked

C I Min 0.121 0.223 0.080 0.174 −0.043 Peaked

C I a
Plan 0.118 0.245 −0.465 0.267 0.156 Sloped

a Computed with CASSCF(8,8) level of theory

5 Conclusions

In this paper we report a comprehensive picture of the S0/S1

extended conical intersection seam of fulvene using a second-
order description. An additional seam critical point (CIMin)
has been found and shown to be the global minimum. The
previously reported [21,26–29] CIPlan and CIPerp are sec-
ond-order saddle points, and the previously documented CI63

and CIPyr are first-order saddle points on the (3N -8) dimen-
sional intersection hyper-line.

These results are consistent with previous studies where
the torsion and pyramidalization modes were proven to be
particularly important for the analysis of the intersection
seam of fulvene. However, they differ from the conclusion
drawn by Deeb et al. [28]. The present results (together with
[21]) strongly suggest that all of the conical intersection criti-
cal points are interconnected on the same seam, in contrast to

the suggestion of Deeb et al. that there may be two different
seams of intersection.
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